

Federal Ministry of Food and Agriculture

Regenerative practices: impact on soil organic carbon sequestration in West Africa

Vincent Logah

Kwame Nkrumah University of Science and Technology, Ghana

email: vlogah.canr@knust.edu.gh

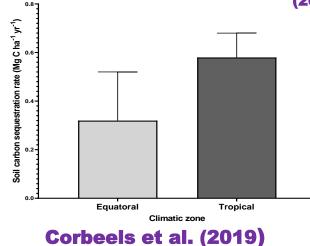
Soil carbon sequestration potential of Africa

* Best practices in Ghana/West Africa

* Case studies

- $\checkmark\,$ The African dark earth phenomenon
- \checkmark Conservation agriculture (CA)
- \checkmark Carbon stock of unique thicket vegetation on Vertisol
- ✓ Trade-offs

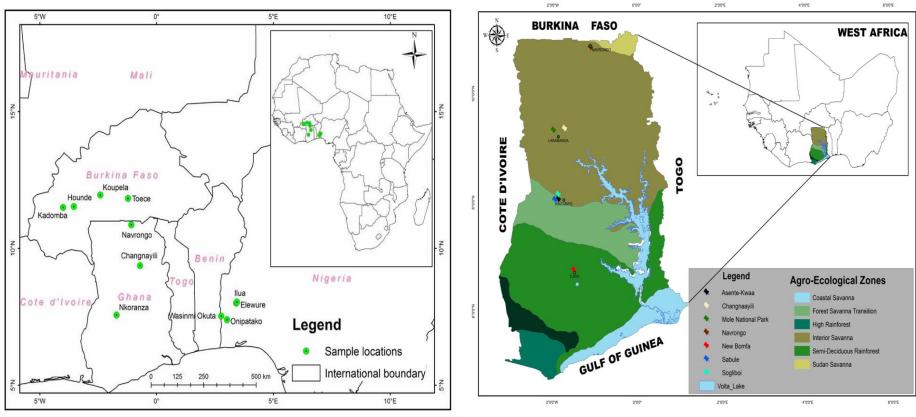
Carbon sequestration potential of Africa


- Potential through croplands, natural savannas, forests
- C sequestration potential of 143 Tg through conservation agruculture (Gonzalez-Sachenz et al. 2019).

No till = 0.60 Mg/ha/yr; (Dahan et al. 2014) Cover cropping = 0.44 Mg C /ha/yr (Joshi et al. 2023)

Mulch tillage =1.4 Mg C /ha/yr (Sharma et al. (2016)

Lower values (20-60% less) also reported
(Corbeels et al. 2019).


Ministry for Primary Industries Manatū Ahu Matua

Study Sites

of Food and Agriculture

GLODAL FORUMEFOODE AGRICULTURE

Soil type of study sites

Soils generally Lixisols and Plinthosols

Stagnic Plinthic Lixisol Sta at Hounde, Burkina Faso

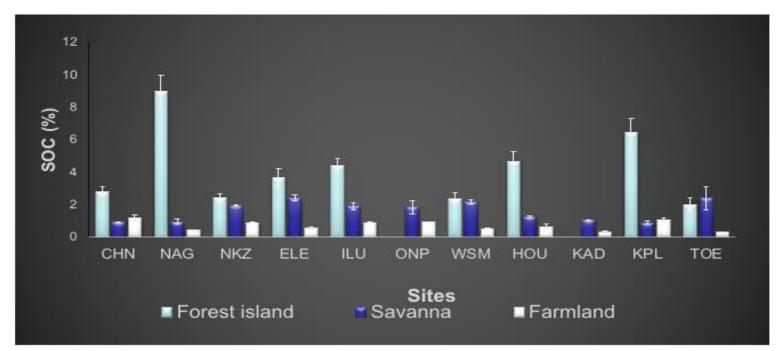
Stagnic Pisoplinthic Plinthosol Do at Navrongo, Ghana

Lixisol at Sogliboi, Ghana

EJP Soil C-arouNd, 2024

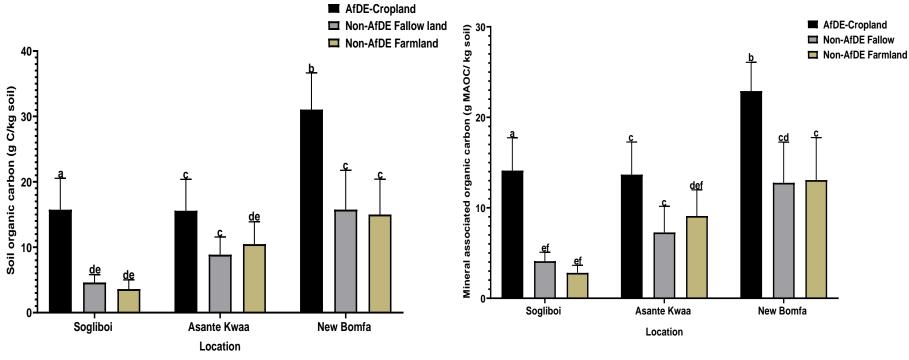
African Dark earths (AfDEs)

- * Formation:
- \checkmark Indigeneous inputs of organic materials
- \checkmark Plant species selection
- \checkmark Protection from fire
- Carbon rich AfDEs are great indigenous innovations for building climate resilience ecosystems
- Important for achieving the "4p1000" and the re-carbonizing soil initiatives (Rumpel et al. 2020, FAO/ITPS, 2021)



Federal Ministry of Food and Agriculture

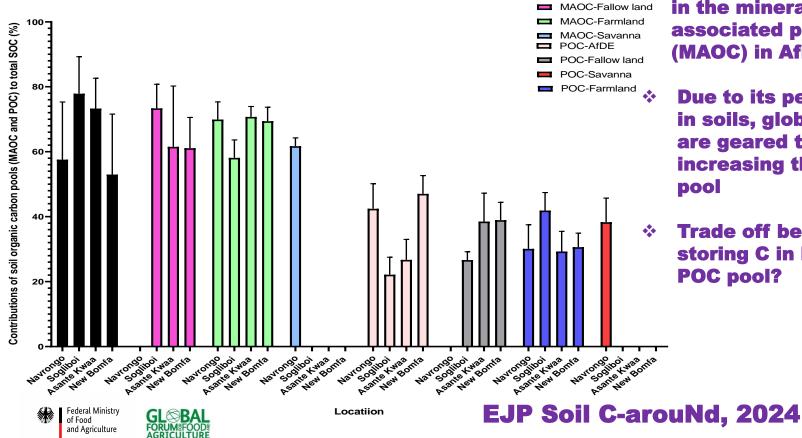
EJP Soil C-arouNd, 2024


Soil carbon distributions in Forest Islands across W/Africa

Soil C distributions in selected Forest Islands and adjacent ecosystems. CHN: Changanayili, NAG: Navrongo; NKZ: Nkoranza (GH); Ele: Elewure; ILU: Ilua; ONP: Onipataku, WSM: Wasinmi Okuta; HOU: Hounde, KAD: Kadomba, KPL: Koupela; TOE: Toece; bars: standard deviations. Melenya and Logah et al. unpubl.

Soil organic carbon distributions in AfDEs in Ghana

Bulk soil organic carbon


Mineral associated organic carbon (MOAC); AfDE = African dark earth

Higher (3×) soil C status in AfDE than non-AfDE EJP Soil C-arouNd, 2024

Persitence of SOC in AfDEs

55-75% of C stabilized ** in the mineral associated pool (MAOC) in AfDEs

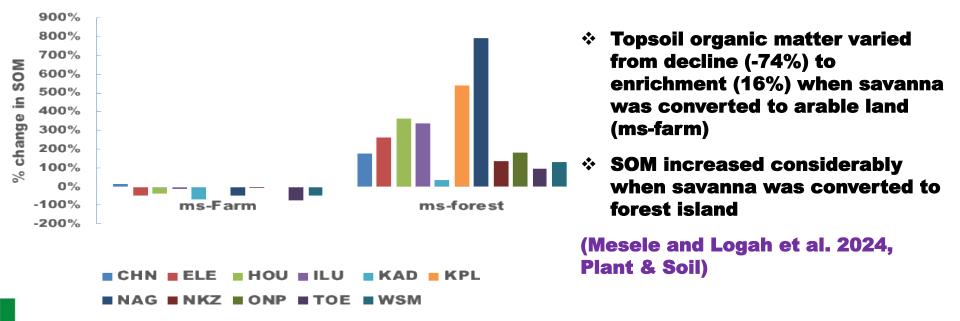
MAOC-AfDE

Due to its persistence in soils, global efforts are geared towards increasing the MAOC

Trade off between storing C in MAOC and **POC pool?**

AfDEs and food securtiy?

- Higher yield on AfDE (Baidoo, Logah et al. unpub.)
- Lower CO₂ emission on AfDEs (Prelim results, not shown)
- Soil profile of two dark earths (left and right) and non-dark earth (middle) in farmland at Sogliboi, Ghana

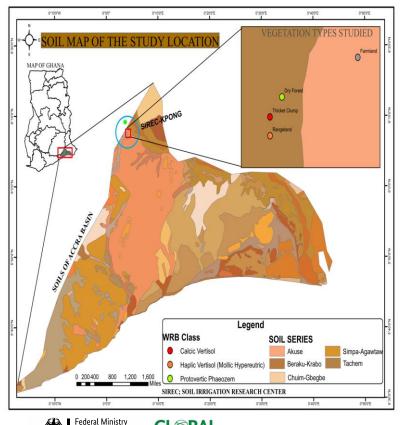


EJP Soil C-arouNd, 2024

Trade-offs in land use change in W/A

Trade-offs in land use change in West Africa; Mesele ...Logah et al. (2024), Plant & Soil

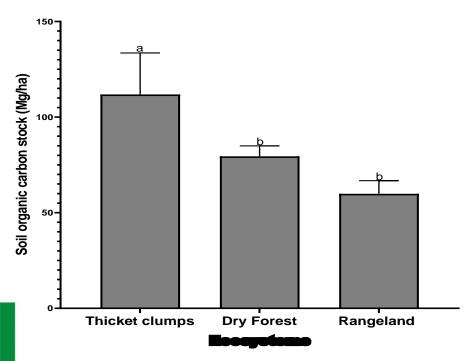
ms-farm =Land conversion from savanna to agricultural land; ms-forest =Land conversion from savanna to forest island; CHN: Changanayili, NAG: Navrongo; NKZ: Nkoranza (GH); Ele: Elewure; ILU: Ilua; ONP: Onipataku, WSM: Wasinmi Okuta; HOU: Hounde, KAD: Kadomba, KPL: Koupela; TOE: Toece:



Thicket areas and soil C sequestration on Vertisol

Thickets on Vertisols in Accra plains

of Food and Agriculture



Thicket before fire

Thicket after fire

The thickets are fire inpenetratable and increases soil carbon sequestration

Soil carbon sequestration in thickets on vertisol

 Thicket areas stored ca. 40 % more soil carbon than dry forest on Vertisol

* Calls for their preservation

(Baidoo and Logah ... 2024, Geoderma Regional)

Conclusion

- * Regenerative practices increased soil carbon sequestration and persistence in West Africa.
- About 55-75% of C is stabilized in the mineral associated pool (MAOC) in AfDEs
- Enhanced carbon sequestration in AfDE holds promise for farm productivity and greenhouse gas reductions
- Need for intentionality and connectivity among stakeholders (policy makers, research institutions, etc.) for farming a sustainable bioeconomy

Acknowledgment

Horizon 2020 Programme

ON AGRICULTURAL GREENHOUSE GASES THE ROYAL SOCIETY

C-arouNd Funded by the New Zealand Government to support the objectives of the Global Research Alliance on Agricultural Greenhouse Gases

Thank you for listening